Hanoi Twin Towers

Problem description

Given three thin pillars of sufficient length, A, B, and C, place 2n disks with holes in the middle on pillar A. These disks have n different sizes, each size has two identical disks. Note that the two disks are not discriminated (The figure below is for n=3).

These disks are now to be moved to the pillar C, which can be temporarily stored on the pillar B during the movement. Requirements :

(1) Only allowed to move one disk at a time;

(2) The disks on A, B, C three pillars must maintain the order of small to large;

Task: let A_n be the minimum number of moves required by moving 2n disks to complete the above task, for the input n, output A_n .

Input

The input file contains a positive integer n, indicating that 2n disks are placed on pillar A.

Output

The output file contains a positive integer as the minimum number of moves A_n required to complete the above task.

Sample Input 1 1 Sample Output 1 2

Sample Input 2 2

Sample Output 2 6

Restriction

For 50% of the data, $1 \le n \le 25$ for 100% of the data, $1 \le n \le 200$

Hint

Try to establish the recursive relation between A_n and A_{n-1} .